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i

I
0. In t roduc t ion  and Overview

In p rac t i ce , long l i f e  items are often subjected to larger

than normal stresses (doses) in order to obtain failure data in a

short amount of test time. It is common to test the items at more

than one stress level , and typically , more items are tested at the

higher stress levels than those at the lower stress levels; such

tests are known as ~~~~~~~~~~~~~~ or ~~~~~~~~~~ life tests. The basic

aim is to make inferences about the life distribution of the items

at the normal stress levels using the failure data from accelerated

tests.

The current approach to this important problem makes inferences

under parametric assumptions . This may be valid in some situations ,

and does yield results which are appealing from a statistical point

of view. However, an engineer or a statistician working under less

well—defined conditions may find this approach too restrictive . For

example , it is common to assume that at all stress levels, f a i l ur e

times are governed by exponential distributions or Weihull distr ihu—

t ions. In addition , a functional relationship between the parameter i

a

— 
.: 
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of the tailure distribution and the applied stress is assumed. Such

a relationship is known as an .z~uc[e i’o t ~~~~ •~~~ut  jun or a tJ.’r; c

~~~~~~~~~ j~~~~~iu~~; examples can be found in Mann, Schafer , and Sing—

purwalla (Chapter 9, (1974)). in two recent papers , Phatak, Zinun er ,

and Williams (1977) and Shaked , Zimme r and Ball (1977), the distribu-

tional assumption is dropped , but the requirement is retained that

the (unknown) failure distribution be of the same form at the use and

at all the accelerated stress levels.

C ’Lea r l v , t h e r e  are  many s i t u a t i o n s  where the above assumptions

may not ~~e’ a p p r o p r i a te .  Of pa r t i cu la r  concern is the  assumption t h a t

t he  f a i l u r e  d i s t r i b u t i o n  is of the same form at  a l l  t he  s t ress  l eve l s .

One reason fo r  t h i s  concern is tha t  d i f f e r e n t  s t ress  l eve l s  may have

d i f f e r e n t  ef f e c t s  on the  mechanism which causes f a i l u r e , an t h u s  I rom

a phy s i ca l  po in t  ot v iew , i t  may be more r e a l i s t i c  to al low f o r  d i f f e r -

ent forms of t h e  f a i l u r e  d i s t r i b u t i o n  at t h e  d i f f e r e n t  s t ress  l ev e l s .

The approach  that we propose in th i s  paper requi res  n e i t h e r

d is t  r ibut  ton a l assumpt ions nor t h e  spec if icat  ion of a t ime t rausforma—

t Ion I u n c t  Ion .  R a t h er , our approach is haves  i an , and Is prompted by

what is act u a l  iv done in pr ac t  ice . The Baye sian po in t  of view a l l o w s

us t o  i nc o r p or a t e  some :~~~~~ ‘ :~~ i n f o r m a t i o n  wh ich is ava i l ab le  in

a c e r i  er a t  ed l i f e  t e s t s .  We would l ike  t h i s  paper to be const rued .15

prcl in ~n .~rv and p r agm a t i c , and t h u s  have not a t t e m p t e d  t o  give a t n il

theor etical .j u st  i f  icat ion .  Consequent l y ,  we would  like to invite’

mathem atical s t a t i s t i c i a n s  to resolve the  st a t i s t i c a l  problems posed.

1.. l’rel i c i i n a r  ies

As s t a t e d  bet  ore , in accelerated life tests the items are tested

und er di f ferent stress environments. A stress environment may be

c h a r a c t e r i z e d  by a sing le stress such as voltage or temperature , or

1w m u l t i p l e  st. 1e sst ’5 , each of .i different type. We denote a stress

env i ronmen t  by F , and the  set of all F’ s by . We assume

tha t  t he  e lements  o l may be ordered according to  the m ag n i t u d e

of t h e i r  s e v e r i t y .  Thus , fo r  any two elements F 1 and

a
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belonging to F . ~ 
denotes the fact that is more severe

than E . . Let us denote the  k accelerated stress e n v i r o n m e n ts  by
.1

E1,E2,. . . , E~ , and the normal or use conditions stress environment

by E
u 

We shall assume that the set is completely ordered w ith

respect to the relationship >. and that

1 2 k u

The bas ic problem in accelera ted lif e test ing is to make

inferences about the l i f e  d i s t r i b u t i o n  of t he  i tem under use environ-

ment E using failure data obtained under accelerated stress environ-

ments E1, E2,. . . ,E~ , where k > 1 . In some si tua t ions , it is possible

to obtain a limited amount of failure data under the use conditions

environmen t E ; however , in practice , these situat ions do not appear
to be very common. Although having failure data under the use cond i-

tions environment E has advantages, ~ts absence is in no way detri-

mental to our approach . However , in order to ob tain resul ts wh ich are
useful , it Is necessary that k be moderate to large, and this is what

we require. This requirement does not impose any practical difficul-

ties in many situations of interest , especially those involving the
accelera ted l i f e  tes t ing of elec tronic componen ts and in bioas say

experiments on animal populations.

In order to introduce some notation , let us denote the failure

distribution of the items which are tested under environment E. by

F~ , where F(O ) E 0 for all values of j . We assume that F .

is absolu tely con tinuous and thus f~~(x) , its probab ili ty density

func tion , exists for xc[O ,~~) . If we denote 1 — F~ (x) by F .(x)

then A~~(x) , the ~
‘aiLur’c rztc of F~ (x) , is defined by

14 (x) -
X .( x )  - , F

~
(x) ~‘ 0

P (x) “j  a
— 3 —
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We f ind It c o n v e n ien t  m d  r e asonab l e  t o  assume t h a t  \ (x )  is

cont inuous  in x f or  x t  ~0 ,~ ) . We use t h e  t erms .

and ~~~~ m t  erc hangeab ly . Si nct~ F 1 > E~ ~
it is logical to assume t h a t

> •. .  > X~~(X) ~ tl .i )

for  all x~ [0 ,~’)

Using fa ilure da ta ob tained under E
1
,E.,,. . . , F~ , we would

l i k e  to obta in  est imators  A~~(x) of \
j

(X) J l ,2,..,k , such th at

for some 0 L ‘ and a l l  x r ( O ,L]

at - st st
~~~~~~ 

~ 
X~~(x) .

St
The notation X ‘

~ Y denotes the fac t that X Is s t o c h a~;t ic~~l l v

larger than 1’ ; i . e . ,

P [X > x )  P~ Y” x ]  f o r  a l l  va lues  of x

In order to o b t a i n  e s t i m a t o r s  of k~~(x )  , J = 1 , 2 , . . .  , k

which s a t i s f y  Equa t ion  ( 1 .2 ) ,  we shall  use a Bayesian approach .  i’ ud~’r

this  approach , Condi t ion  (1 . 1)  i s  incorporatel as a prior assumption .

Our approach is  in c o n t r a s t  w i t h  that  of Brunk , Franek , Hanson and

Hogg (1966) , who embody a s imila r  but weaker  cond i t ion  than (1. 1 in

the i r  l ikel ihood f u n c t i o n .  S p ec i f i c a l ly , Brunk t’t al. assume that

the  d i st r ib ut  ions a re  order ed  i .e.

F
1

(x ) F9(x) > F~(x) Vx

The above condition is a consequence of Condition (1.!), hut is not

equivalent  to i t .  Also , the  approach of Brunk et al. is not h.ivesian .

We s h a ll  f i r s t  present  a methodology for  a Bayesian e s t i m a t i o n

of t he  ind ividual hazard  r a t e  \~~(x)  uncons t r a ined  by ( 1 . 1 ) .

I

— 4 - .
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2. Balysian Estimation of a Single
H azard  Ra te  Func t ion

For estimating an individual hazard rate A~~(t) , we use

the following Bayesian procedure.

Let N .(t) be the  number of i tems exposed to the environment

at t ime t . Thus , N .(0) is the number of Items that are initially

put on test in environment E .

We hypothesize that the failure times are governed by a t ime—

dependent Poisson process with the probability of failure in (t ,t+h]

giv en by

N . (t)A .(t)h + o (h)

where ~~(t) is the failure rate at time t under environment E.

For purposes of analy sis , we divide the time interval [o ,L]

into intervals of length h > o , where ii is chosen to make L a

multiple of h . For convenience , we denote (i—1)h by t .

by ~~~~ , and A~ (t~ ) by , for 1 1,2,... ,(LIh)

Let x~ . denote the number of failures in [t .,t .+h) : if
3 , 1 1 1

there are no wi thdrawals , removals , censoring , e t c . ,  then

N N . — x . . . It is he lp fu l  to c la r i f y the above terms by
.1, 1+1 j , i 3, 1 -

the following diagram :

Number of failures x .
3 , 1

Number surviving = N~ ~L ‘

~~~~ 
‘II, 

1.

oh=t1 
lh=t2 2h=t

3 
(i— 1)h=t

1 
ih=t1+1 

... (.‘±) h.rt

a
— 5 —
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1 he j o in t d i s t  r ihu t  ion ol x 
,:‘~~~

“‘  , (L/h)+I

given by the multi nom ial distributi on

(L/ h ) + l  x

~~~~ 
~~~~ 

~~ 
. ( 2 . 1 )

where P~ i s  I . ~ p r o b a h i  1 l t ~ ot I a l l u r e  01 a sp e c i f i e d  t i n it  i l l

w i t h

(1./h) (L/h)

~~~~~~ ( l . / h ) + 1  I - P~ ~ 
and x~ (1/h)+1 N~ .1 

- 

~~~~~~

i -i  
*

D e n o t i n g  i~ / i — P~ .1 by p .  , Equation (2.1) can

be expressed ( W l l 1 ~s (1962 1 . p. 151 , Proh i en  6 .131 as

(L/h) t y ,  . 1! 
* 

x 
* 

N , —x
~ ~~

‘ ‘ l —  ‘ ~~~ (~~ 2 )\~ ( \  ,
~ ~~ ‘p, 1 j  &~~ j

i—i j j F~~ \~~~~j j  
•
j j

F~~ J~~ .1~~

The P~~~~’s can be in te rpre ted  as the  ~~
‘ . ‘ : ‘  ~~~~~ I~~

5’

ove r the  i n t e r v a l  1t 1,t . +1) tha t  is , is the c o n d i t i o n a l  i ,r ob—

a b i l i ty  tha t  an item which  survived to t ime t 1 w i l l  f a i l  by t i m e

t . In t e r m s  of thc 1 , .  , we can w r i t e1+1 ~~~~1

*\ j j  Ii — + o ( h )

Equation t 2 . 2 )  prov id s us with a starting point for a

Bayesian an a l y s i s .

2.1 Pr ior ~ istributIons for p
,~ ~

We shall confine the discussion in this section to

the jth environmental condit ion.

a
— 6 —

L 
~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~



Supp~~~c t h a t  t h e  p~ • , (1 /h~ ,

~~~~ independent beta random vari ables with m a r g i n . t l

dens it ics

f ( ~~~~~) ~~~~~~~~~ l i i ’

It is ot interest to note E el . Lochner ( 1 9 7 5 )j  t h at

t : i e  abovi’ prior density leads us to a ‘u, ’i~ :.’ 
~ :l i:  ~~~‘ .. h .

~~“.o:
’:;. for the ~~ 

(
~~ 1~ P~ -) ‘“ i , ( L/ h ) + l~

Civen the N~~ 1
’s and the x~~~~’s the

dens ity ~f 
~~~~~~~~~~~ ~~J,(L/h)~ 

~~

IL/h ) ~~~~~~~~ + ~~. + N ) a + x -1
_J_2_~_ _ _ J_J j,i ( * ) j,i j,i

i=l ~(ct~~1
+x~~~) 

~~~~~~~ 
N~~~ - x~~~ ) 

Pj , j

* 
i~ ~+N 4 ~— x ~ ~-.i

~~~‘ ~~~‘ _ I,

Se e De’t~roo t (1970) p. lbO .

3. A Bayesian E s t i m a t i o n  of Ordered
Fa i l u re  Rates

In a Haves Ian context • Cond ition (1. 1) leads us to t h e  require-

ment that for every fixed value of I

* 
st 

* for j — 2 , 1 ,... ,k (~~. 1)

Thus , our pr ior distributions on p~~ 1 1  and p
1 1  

will hove

o be chosen such that

~
] 
~~P(P 1 1  

p
~ 

for a ll p ~~O .

One way of achieving Condit ion ( 3 . 2 )  is to assume tha t  th e

parameters of the prior distributions of ~~~~~ and p
1 1  

sat  i s f v
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the fo l lowing  cond i t ions  for  every f ixed  v a l ue  of I

nj , j  
~~

and (3.3)

~~ , i. 

~~~~~~ 

for J = 2,3....,k

For a proof of the above statement , see Appendix A.

In order to be assured that Condition (3.1) is also satisfied

wi th respec t to the posterior distributions of P~ 
and p’~I ,  3 ’

it is sufficient (see Appendix A) that , for every fixed value of I

a + x  < m
j,i j , i — j—l ,i. J— i ,i

and (3.4)

+ ~~~~ - X
11 1 1 ~j - l, i + Nj _ i , i 

- 

~~—l ,i for j = 2,3,...,k

In order to make our Bayesian analys is more prac tical , we w i l l

have to reduce the number of prior parameters. One way of doing this

is to assume that

a for all values of I and j

and t ha t  ( 3 . 5 )

= fo r  I = 1,2,... ,(L/h)

Thus, the prior distribution of each p , I = 1,2,... ,(L/h),

is a beta with parameters a and ~ . This plus Conditions (3.3)

and (3.4) lead us to the following remarks.

The f irst part of Condition (3.4) will be satisfied whenever

x < x for j = 2,3,... ,k . Tha t is , the number of failures
j,

in the in terva l E t i,t~+h) under environment E
1 

mus t is / . i~~(~ ~~~

than the number of failures in the same interval under environment

-~~~~~ ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~ 

,-~~~~ ~~~~~~~~~~~~~~~~~~~ -~~~~~~~ ~~~~~~~~~~~ --—~~ ______
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f or  at  I value ’s of I . itt ’causi’ Conil I t  t on i 3 .4 )  w I l l  li iv t  t t ’

h~’ sat  1st it ’d f or  eve ry  I. LX t ’e I v a  liii’ of I , I I ,.‘,.... (1./h) • a

reasonable at  rat egv is to have’ N
1 

N
1 

for I — 2 • k

‘l’hat is , we shall put  more it ems on t u ~~t ( n i t  t a t  l v )  under t h e  in, ’t e

sev t ’ Fe env I ronisen t K 
— • t ban nuder  t he t ’~~V 1 ronmen t V

1

S ince  N
1 

N
1 ~~~~~ 

— 
~~ 

~~~~~~~~ 

, I — 1 ,2,..., (1./h), th e

sec ~~ t 1 p a r t  ot  Cond It. ton ( 3.4) can be wr i t t  en as

+ N
1 1~~ 

+ N
1 ~~~ 

for  2 , 3 k .

An t n t i ’r p r e t a t  ton  of the  above enud i t  ton Is t h a t  • t~~i e v e r y

I xed vii liii’ of I , t he number  s u r vi v I n g  at  thi ’ start of t h e  (I + I st

interval plus the pr fo r  pariuta’t i t  

~ 
— 

I or I hi ’ eat’ I roumt’nt I.

must be snue Ii r t h an  tht ’  cor responding  aunt t or t he’ e’nv I ronn~eiit I

Thu s • whet her the second pat t of ConditIon ( 3.4) is s i t 1st I ~‘~i or

not , depends not on l y  on the  number of In I lu re ’s in t h e  it h tnt erv.e I

and t lie number sitrv iv lag , but a lso on t hi’ v a t  u1’s of t h e  p r i o r

parame’t er s  and t~ . Since  t h..’ n u m b e r  of tat 1tirt ’~ in a

par t  i cu l a r  m t  er v a t  he a t’unet  Ion of t hi’ sev ’r I  t v  of t he’ c m v i i  on —

ifleflt and t In’ number  LIII t e st  , ~I t I d  5 j f l~~~ — i has o h~’ l O S s  C I I . I I I

or e’qua 1 to (see Cond It tons  . S) and 3. 1 . ~ ) ) , it is reason-
abl e to  hav e ~ — 

~ 
whi’uever 3- < I ’ 

— 
. ‘I’Iui t is , I lie

val ue’s o I t ilt ’ prior paramet ‘rs Ii j_ .‘inet i~ .e i  i ’ I ad f i a t  t e e

of t hi’ r~
. l . *t  l y e  sev ci• It v of t he env I ronment a 1 cond it t on s

and 3- ’ . S In c e  K 1 > 
I ’ , • . . ~~~ l-~ , we’ vi )) choose t h i ’

such t h a t  
~ 

‘ ant i t i t t ’ t~~ tue ’s of t h e  ~

w ~ 11 be ’ Intl I cat  Lvi’ of t he’ sever it v of I he i’itv I ronmen t  a 1 cond l t ions

— I ,2 , . ..

It t he’ )11 lot P .1l’ ,U ~ i ’t e l s  , — I ,~~~~,... ,k , and the ’ ~iat .i

from the acc~’ te ’r ot eu i t  f e  est , anti N
1 

, I I , 2 , , . .  ,

are such that Cone! It ton (3 . 6) is Mat 1sf it’d I or i’ve’ rv  11 xe’ei v a  I en’ o I

I , then the  st oc least  Ic o r der i ng  Conit itt on 3. 1. 1) w Il t be .eee t  onto t I c  . e 1 1  v

silt 1sf Ic,) vi th re ’spe ’ct o t h e ’ post e’r b r  it 1st r I but  I on of

— i) —

j J

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -
. ‘ _~~~ ~~~~



T-J 75

• If the above is not the case, then we

will have to pool the adjacent violators using the pooling procedure

described in the next section.

4.0 The Pooling of Adjacent Violators

The procedure for pooling adjacent violators described her e

is commonly used in ~aotonic regression ; see Barlow, Bartholomew ,

Bremner and Brunk (1972). The pooling is between the violators of

the assumed ordering ; that is, whenever x3_1 ,1 
< x

1 1  
then

and x
i i  

are pooled .

Consider the t ime interval [(i—l)h ,ih); by Condition (3.4)

we require

x > x  > ...>x > x  > ...>x
1,1 — 2,1 — — 1—1 ,1 -‘- j,i — — k,i

and

+ N11  
— 

~l i  <- ~2 
+ N

2 i  
— x

2~~ ~ ~ 
13i_i + N

1~ 1,1 
— 

~
‘j—l ,i

+ — “ 

~~
- 

~k 
+ Nk i  

— Xk i

If a reversal occurs , that is, if either

xj_l ,i 
< x

i i

or if

+ N 1 1 1  
— x1_1,~ 

> + -

then we pooi the violators and replace them as shown below.

Replace both x
1 1 1  

and by ~ (x1 .11+ X1 1
) and

+ N
1 1 1  

- x
1 1 ,~ 

and + N
11  

- x
1~~ 

by

+ N1_ 1 ,~ + N
1~~~ - X

1 1 1  
- X

11
)

— 10 - 

~~~~~~~~~~~~~~~
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We now test to see if the new sequenc.e is properly ordered , i.e.,

x
11 I X

2~~~ I I ~(x1 1 ,1
+ x

1 1
) = 

~~(Xj_ i , i
+ x~~1

) ~

I ~~~~~~ I Xk j

and

+ N~~~1 
- x

1 1 ~ ~~~
(
~j_i

+ ~~+ N1_~ ,1
+ N

1 1
— x1_1 ,1- x1~~

)

= 
~~~ ~~~~~~~ 

~ 
+ N1_1,1+ N

1 1
- x

1 1 ,1
- x

1 1
) ~ 

... 
~ 
8k~~k,i 

Xk j

If a reversal exists in either of the new sequences, then we

replace again by appropriate averages. Thus, if

1 1
‘1(x1_1 ,1+ x1~~

) = ~-(x1 1~~
+ x

1 1
) ~~~~~

or if

÷ N1_~~,~ + N
1 1

- x
1 1 ,~ - x1~~

) > + Nj+l ~ 
- x~~11

then we replace each one of the three by the corresponding average

~ (x1_1 ,1+ x1 1
+ x

1+1 i
)

(in the first sequence) and

1 + 
~~~~~ 

N
1...1~~ + N

11
+ Nj+1 j ~ 

x
1 1 ,~

- x
j,i

_ x1.~1~~
)

(in the second sequence).

We continue the above procedure until all reversals in the

interval [(i—1)h ,ih) are eliminated. We use this pooling scheme for

each of the (L/h) time intervals to achieve the desired ordering.

4.1 Some General Conmeents Regarding
the Poolin& Procedure

• The following comments regarding the pooling of

adjacent violators will be helpful.

— 1 1 —

li ~~~~
j  

-.-- - - - - -“ - -
~
-. - - -— ‘- . -- —~~~~~~~~

-
~~~

---- ----
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1. An excessive amount of pooling occurs if th~
relationship specified by Condition (1.1) is

incorrect , or if the environmental conditions

E1, E2,. . . ,Ek are too similar to each other .

2. If A
1
(0+) E 0 for j — 1,2,.. ,k , then it

is reasonable to expect that some pooling will

be necessary at the lower values of 1

1 1,2,... ,(L/h)

For many practical situations , it is reasonable to

assume that the failure distributions F
1 
, j = 1,2,.. ,k,u

have increasing failure rate (see Barlow and Proschan (1975)).

If we wish to make such an assumption, and incorporate it

into our analysis, then, for each value of j , we must have

in addition to Condition (3.1)

A < A
i . l — l  — 

1,1

or that

* 
St 

*
P1,1...1 .1 P1,1 

i — 1,2,... ,(L/h)

The above condition will further complicate our pooling

procedure; we shall therefore not assume that the F
1 

are

increasing failure rate.

5. The Posterior Distributions
of the pjc ~~s

It is apparent from the discussion in Sections 3 and 4 that the

posterior distributions of the p
1
’s depend on the outcome of our

pooling procedure. The posterior analysis is straightforward if no

pooling is necessary, for then, the posterior distribution of

(i’~~1~p 2,... ‘~~~ (Lfh)+1~ 
is simply

— 12 —

L - -— 
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(Lih) r(n+~~+N~~1) ( * ) i~
i (l *

~.—l 
r (ce+x1 1 )r(81

+N1,1—x1,1
) ~

‘1,i 
p
1,1

for i = 1,2,... ,k

tinder the assumption of a squared error loss function, a Bayes

estimator of P~~~ 
I = 1,2,... ,(LIh) , j = 1,2,... ,k , is simply

the posterior mean; that is

— 

ce+x
i,i

— 

(a+8
3
+N
1~~
) ‘

(see DeGroot (1970) p.40)

If pooling is necessary , then some or all of the x
1~~~

’s and

the (~1
+N

1 1
)’s will be replaced by their appropriately pooled averages.

In any case, the general expression for p~ will be of the form
i,i

given above.

6. A Model for Extrapolations to
Use Conditions Stress

Our analysis leads us to an array of Bayes estimators of the

average ‘~ai1ure rates over intervals of length h , for each environ—

mental \condition. Because of our pooling strategy , the Bayes estimators

will be correctly ordered . That is, for each fixed value of i

P1,j I P2,j I •.•  
~ 

p~~~ 
(6.1)

Given the p~~~1
1 S , j = 1,2,... ,k and i = 1,2,... ,(Lfh)

our goal is to predict 1’u,l ‘ ~u,2,
’’’

~u ,(L/h)  , the average

failure rates over the time intervals [(1—l)h ,ih) , I 1,2,... ,(Lfh) ,

respectively , under the use conditions environme,tt E
~ 

.

I

-13 
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in the absence of any knowledge about a relationship between

the average failure rates and the values of the various stresses which

cor.stitute an environment , some form of an assumption is essential.

This is particularly cruc ial if k , the number of distinct environ-

mental conditions of interest, is small. If , however, k is large ,

then a relationship between the average failure rates and the stresses

can be emptrically obtained ; this is what is often done in practice.

When~~k is small, we shall postulate the following simple bu t

reasonable r\lationship between the average failure rate estimates.

For some\k unkno~n constants w0 , w1 ,... , W
k_ l 

we

assume that for each value of i , I = 1,2,... ,(L/h)

— + 1i7
1 P~~_~~~j + 

~ 2 ~~~~~~ 
+ • • •  + W~ ...1 

. ( 6 . 2 )

The above relationship states that the average failure rate

over a particular time interval under the environmental condition

is a weighted sum of the average failure rates over the same

time interval under the conditions Ek i  , ~~~~~~~~~~ E
1 

. This is

reminiscent of an ~i~toregressive process of order k—l which has found

useful applications in forecasting (see Box and Jenkins (1975)).

In order to make the above relationship more meaningful we

shall require that the environmental conditions Ek< 
E
k l~

< •. .  ~ E~ ~< E1

increase in magnitude of severity by the same fixed amount . For

example, if E
1 

represents a single stress, say a voltage stress V
1

then we shall require that V1,1 V
1 

= C , where C ir some suitable

constant , j = 1,2,~ ” ,k

Since Equation (6.2) holds for i l,2, • • • , (L/h )  , the least

squares estimators of w0 , V
1 ~~

“,Wk.l can be obtained in a routine

manner. These estimators are denoted by W0 , W
1 ,‘‘• , Vk_ l

-14 -
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If the increase in the magnitude of the severity of the

environment from E to E. is the same as that from E to F .
U K j J l

j — 2,3,•.’,k , then an estimator of the average failure rate under

E iS given by

S S 

~ *— w
0 + W1P~~1+ + Wk...l , i 

p
2,1 

(6.3)

(L/h)  
~~for I — l,2,~~’ , (L/h )  , and p 

‘L/h 1 
= — E pu,~ ) i—I. u,

If the increase in magnitude of the severity of the environment

from E to is two times that from E
1 

to E
1 1  

, j = 2,3,... ,k

then we iterate upon Equation (6.3) one more time to obtain the desired

result. Thus, in principle , we can iterate upon Equation (6.3) as many F
times as is necessary , depending upon the separation between E

~ 
and

*
By the definition of p 

~ 
, the probability of an item surviving

* 
U ,

to time t (assumed a multiple of h ) under environment E is

— * 
t*/h 

*F ( t )=  II (i— p ~) .
U i=l U~

Thus, we have the following as an estimator of F(t*)

I * 
t*/h 

~~F ( t ) =  H (i—p ~~~~~~u 
~~~~~~~ 

u, 
,

where the are given by (6.3).

The properties of this estimator have not been studied . The

estimation procedure has been proposed as a practical method for

providing answers in the difficult area of accelerated testing .

1-
- — 1 5 —
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Appendix A

In this appendix we determine sufficient conditions under which

two beta random variables are stochastically ordered . The results may

already be known; however, they are included for completeness.

The notation and terminology are taken from Barlow and Proschan

(1975).

x—l —x
We first note that a gaimua density f ( x ,n) = 

r(c) is TP2

~ a—l
in (x ,c i)  . Therefore, F(x,ct) = f 

~~~ 
e~~dx is TP

2 
in (x,a) since

x

F(x,c&) = 5 f(y,ct) li(x,y)dy, where H(x,y) = 1 for y I x and

H(x1,y1) H(x 1,y2)H(x ,y) — 0 for y < x • (Note that 
~ 
0 for

11(x2,y1
) H(x

2
,y

2
)

< x2 ~
‘1 

<
~~2 

Thus , H(x,y) is TP
2 , 

and so the composition of

f , H is TP,, .)

Since ~ (x ,a) is TP
2 , then for x

1 
< x2 , 

<

,a ) ~(x ,c* )~

— I 0 . Choose x — 0 . Then > 0
F(x2,ct1

) P(x2,ci2) 
1 

~ (x ,c&
1

) F( x,ci2) 
—

for 0 < x  < 
‘ a

1 
< a

2 
. Thus , ~(x,a2) I P(x ,a1

) for <

and x > 0

1

— 16 —
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We have shown :

1. Lemma . Let X be a gamma r .v .  w i th  shape parameter

a . Then X is increasing stochastically in a
a a~

_1

2. Proposition . Let ‘1 have density 
~~~~~ 

e~
” , I = 1 .2

a
1

and Y , Y be independent. Then X has bet.i
a a ~~~~~~~~~ Y + Y
1 2 1 2  cz1 

a,,

r(a 1+u 2
) 

~~~~~~~~ 
cz

2 l
density f ( a 1, a ., ,x) = 

r (a
1

) r (a 2 ) X (l x) 
fo r  0 < x < 1

(Hogg & Craig,  1970 , p. 134).

3. Theorem. Let X
3 ,a 

have beta density f(a1,a1,x)

Then X is increasing stochastically in a1 
and decreasing

stochasticaily in

Proof . Write X = 1 —- 
, x — 

1
a ,n Y + ‘1 a ,a V + V
1 2 a1 a2 

1 2 a
1 a.-,

St

where a.-, < . For fixed Y , X > X ,
- a

1 
a
1
,ct
2 

— a1
,a

2 
. By unconditioning

at
,a X , for a < a ’

1 2 a1
,c~ 2 2

St
By similar reasoning , we can show X < ~ , for

— ct l,a2
a~~ < c t~~ . H

1

— 17 —
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